bhi.c 9.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
#include <stdio.h>
#include <string.h>

#include "gpio.h"
#include "bhy_uc_driver.h"
#include "bhy.h"
#include "pmic.h"

#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
#include "queue.h"

14
#include "api/interrupt-sender.h"
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#include "epicardium.h"
#include "modules/log.h"
#include "modules/modules.h"
#include "modules/stream.h"

/* Ticks to wait when trying to acquire lock */
#define LOCK_WAIT pdMS_TO_TICKS(BHI160_MUTEX_WAIT_MS)

/* BHI160 Firmware Blob.  Contents are defined in libcard10. */
extern uint8_t bhy1_fw[];

/* Interrupt Pin */
static const gpio_cfg_t bhi160_interrupt_pin = {
	PORT_0, PIN_13, GPIO_FUNC_IN, GPIO_PAD_PULL_UP
};

/* Axis remapping matrices */
static int8_t bhi160_mapping_matrix[3 * 3] = { 0, -1, 0, 1, 0, 0, 0, 0, 1 };
static int8_t bmm150_mapping_matrix[3 * 3] = { -1, 0, 0, 0, 1, 0, 0, 0, -1 };

/*
 * From the official docs:
 *
 *    The sic matrix should be calculated for customer platform by logging
 *    uncalibrated magnetometer data.  The sic matrix here is only an example
 *    array (identity matrix). Customer should generate their own matrix.  This
 *    affects magnetometer fusion performance.
 *
 * TODO: Get data for card10
 */
/* clang-format off */
static float bhi160_sic_array[3 * 3] = { 1.0, 0.0, 0.0,
                                         0.0, 1.0, 0.0,
                                         0.0, 0.0, 1.0 };
/* clang-format on */

/* BHI160 Fifo */
static uint8_t bhi160_fifo[BHI160_FIFO_SIZE];
static size_t start_index = 0;

/* BHI160 Task ID */
static TaskHandle_t bhi160_task_id = NULL;

/* BHI160 Mutex */
static StaticSemaphore_t bhi160_mutex_data;
static SemaphoreHandle_t bhi160_mutex = NULL;

/* Streams */
static struct stream_info bhi160_streams[10];

/* -- Utilities -------------------------------------------------------- {{{ */
/*
 * Retrieve the data size for a sensor.  This value is needed for the creation
 * of the sensor's sample queue.
 */
static size_t bhi160_lookup_data_size(enum bhi160_sensor_type type)
{
	switch (type) {
	case BHI160_ACCELEROMETER:
	case BHI160_MAGNETOMETER:
	case BHI160_ORIENTATION:
		return sizeof(struct bhi160_data_vector);
	default:
		return 0;
	}
}

/*
 * Map a sensor type to the virtual sensor ID used by BHy1.
 */
static bhy_virtual_sensor_t bhi160_lookup_vs_id(enum bhi160_sensor_type type)
{
	switch (type) {
	case BHI160_ACCELEROMETER:
		return VS_ID_ACCELEROMETER;
	default:
		return -1;
	}
}

/*
 * Map a sensor type to its stream descriptor.
 */
static int bhi160_lookup_sd(enum bhi160_sensor_type type)
{
	switch (type) {
	case BHI160_ACCELEROMETER:
		return SD_BHI160_ACCELEROMETER;
	default:
		return -1;
	}
}
/* }}} */

/* -- API -------------------------------------------------------------- {{{ */
int epic_bhi160_enable_sensor(
	enum bhi160_sensor_type sensor_type,
	struct bhi160_sensor_config *config
) {
	bhy_virtual_sensor_t vs_id = bhi160_lookup_vs_id(sensor_type);
	if (vs_id < 0) {
		return -ENODEV;
	}

	if (xSemaphoreTake(bhi160_mutex, LOCK_WAIT) == pdTRUE) {
		struct stream_info *stream = &bhi160_streams[sensor_type];
		stream->item_size = bhi160_lookup_data_size(sensor_type);
		/* TODO: Sanity check length */
		stream->queue = xQueueCreate(
			config->sample_buffer_len, stream->item_size
		);
		if (stream->queue == NULL) {
			xSemaphoreGive(bhi160_mutex);
			return -ENOMEM;
		}

		stream_register(bhi160_lookup_sd(sensor_type), stream);

		bhy_enable_virtual_sensor(
			vs_id,
			VS_WAKEUP,
			config->sample_rate,
			0,
			VS_FLUSH_NONE,
			0,
			config->dynamic_range /* dynamic range is sensor dependent */
		);
		xSemaphoreGive(bhi160_mutex);
	} else {
		return -EBUSY;
	}

	return 0;
}

int epic_bhi160_disable_sensor(enum bhi160_sensor_type sensor_type)
{
	bhy_virtual_sensor_t vs_id = bhi160_lookup_vs_id(sensor_type);
	if (vs_id < 0) {
		return -ENODEV;
	}

	if (xSemaphoreTake(bhi160_mutex, LOCK_WAIT) == pdTRUE) {
		struct stream_info *stream = &bhi160_streams[sensor_type];
		stream_deregister(bhi160_lookup_sd(sensor_type), stream);
		vQueueDelete(stream->queue);
		stream->queue = NULL;

		bhy_disable_virtual_sensor(vs_id, VS_WAKEUP);
		xSemaphoreGive(bhi160_mutex);
	} else {
		return -EBUSY;
	}

	return 0;
}
/* }}} */

/* -- Driver ----------------------------------------------------------- {{{ */
/*
 * Handle a single packet from the FIFO.  For most sensors this means pushing
 * the sample into its sample queue.
 */
static void
bhi160_handle_packet(bhy_data_type_t data_type, bhy_data_generic_t *sensor_data)
{
	uint8_t sensor_id = sensor_data->data_vector.sensor_id;
	struct bhi160_data_vector data_vector;
	/*
	 * Timestamp of the next samples, counting at 32 kHz.
	 * Currently unused.
	 */
	static uint32_t timestamp = 0;

	switch (sensor_id) {
	case VS_ID_TIMESTAMP_MSW:
	case VS_ID_TIMESTAMP_MSW_WAKEUP:
		MXC_ASSERT(data_type == BHY_DATA_TYPE_SCALAR_U16);
		timestamp = sensor_data->data_scalar_u16.data << 16;
		break;
	case VS_ID_TIMESTAMP_LSW:
	case VS_ID_TIMESTAMP_LSW_WAKEUP:
		MXC_ASSERT(data_type == BHY_DATA_TYPE_SCALAR_U16);
		timestamp = (timestamp & 0xFFFF0000) |
			    sensor_data->data_scalar_u16.data;
		break;
	case VS_ID_ACCELEROMETER:
	case VS_ID_ACCELEROMETER_WAKEUP:
		MXC_ASSERT(data_type == BHY_DATA_TYPE_VECTOR);
		if (bhi160_streams[BHI160_ACCELEROMETER].queue == NULL) {
			break;
		}
		data_vector.x = sensor_data->data_vector.x;
		data_vector.y = sensor_data->data_vector.y;
		data_vector.z = sensor_data->data_vector.z;
		xQueueSend(
			bhi160_streams[BHI160_ACCELEROMETER].queue,
			&data_vector,
			BHI160_MUTEX_WAIT_MS
		);
215
216
217
		if (sensor_id == VS_ID_ACCELEROMETER_WAKEUP) {
			api_interrupt_trigger(EPIC_INT_BHI160_ACCELEROMETER);
		}
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
		break;
	default:
		break;
	}
}

/*
 * Fetch all data available from BHI160's FIFO buffer and handle all packets
 * contained in it.
 */
static int bhi160_fetch_fifo(void)
{
	/*
	 * Warning:  The code from the BHy1 docs has some issues.  This
	 * implementation looks similar, but has a few important differences.
	 * You'll probably be best of leaving it as it is ...
	 */

	int ret = BHY_SUCCESS;
	/* Number of bytes left in BHI160's FIFO buffer */
	uint16_t bytes_left_in_fifo = 1;

	if (xSemaphoreTake(bhi160_mutex, LOCK_WAIT) != pdTRUE) {
		return -EBUSY;
	}

	while (bytes_left_in_fifo) {
		/* Fill local FIFO buffer with as many bytes as possible */
		uint16_t bytes_read;
		bhy_read_fifo(
			&bhi160_fifo[start_index],
			BHI160_FIFO_SIZE - start_index,
			&bytes_read,
			&bytes_left_in_fifo
		);

		/* Add the bytes left from the last transfer on top */
		bytes_read += start_index;

		/* Handle all full packets received in this transfer */
		uint8_t *fifo_ptr   = bhi160_fifo;
		uint16_t bytes_left = bytes_read;
		while (ret == BHY_SUCCESS &&
		       bytes_left > sizeof(bhy_data_generic_t)) {
			/*
			 * TODO: sizeof(bhy_data_generic_t) is probably
			 * incorrect and makes some measurements arrive late.
			 */
			bhy_data_generic_t sensor_data;
			bhy_data_type_t data_type;
			ret = bhy_parse_next_fifo_packet(
				&fifo_ptr,
				&bytes_left,
				&sensor_data,
				&data_type
			);

			if (ret == BHY_SUCCESS) {
				bhi160_handle_packet(data_type, &sensor_data);
			}
		}

		/* Shift the remaining bytes to the beginning */
		for (int i = 0; i < bytes_left; i++) {
			bhi160_fifo[i] =
				bhi160_fifo[bytes_read - bytes_left + i];
		}
		start_index = bytes_left;
	}

	xSemaphoreGive(bhi160_mutex);
	return 0;
}

/*
 * Callback for the BHI160 interrupt pin.  This callback is called from the
 * SDK's GPIO interrupt driver, in interrupt context.
 */
static void bhi160_interrupt_callback(void *_)
{
	BaseType_t xHigherPriorityTaskWoken = pdFALSE;

	if (bhi160_task_id != NULL) {
		vTaskNotifyGiveFromISR(
			bhi160_task_id, &xHigherPriorityTaskWoken
		);
		portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
	}
}
/* }}} */

void vBhi160Task(void *pvParameters)
{
	int ret;

	bhi160_task_id = xTaskGetCurrentTaskHandle();
	bhi160_mutex   = xSemaphoreCreateMutexStatic(&bhi160_mutex_data);

	/* Take Mutex during initialization, just in case */
	if (xSemaphoreTake(bhi160_mutex, 0) != pdTRUE) {
		LOG_CRIT("bhi160", "Failed to acquire BHI160 mutex!");
		vTaskDelay(portMAX_DELAY);
	}

	memset(bhi160_streams, 0x00, sizeof(bhi160_streams));

	/* Install interrupt callback */
	GPIO_Config(&bhi160_interrupt_pin);
	GPIO_RegisterCallback(
		&bhi160_interrupt_pin, bhi160_interrupt_callback, NULL
	);
	GPIO_IntConfig(&bhi160_interrupt_pin, GPIO_INT_EDGE, GPIO_INT_RISING);
	GPIO_IntEnable(&bhi160_interrupt_pin);
	NVIC_SetPriority(
		(IRQn_Type)MXC_GPIO_GET_IRQ(bhi160_interrupt_pin.port), 2
	);
	NVIC_EnableIRQ((IRQn_Type)MXC_GPIO_GET_IRQ(bhi160_interrupt_pin.port));

	/* Upload firmware */
	ret = bhy_driver_init(bhy1_fw);
	if (ret) {
		LOG_CRIT("bhi160", "BHy1 init failed!");
		vTaskDelay(portMAX_DELAY);
	}

	/* Wait for first two interrupts */
	ulTaskNotifyTake(pdTRUE, pdMS_TO_TICKS(100));
	ulTaskNotifyTake(pdTRUE, pdMS_TO_TICKS(100));

	/* Remap axes to match card10 layout */
	bhy_mapping_matrix_set(
		PHYSICAL_SENSOR_INDEX_ACC, bhi160_mapping_matrix
	);
	bhy_mapping_matrix_set(
		PHYSICAL_SENSOR_INDEX_MAG, bmm150_mapping_matrix
	);
	bhy_mapping_matrix_set(
		PHYSICAL_SENSOR_INDEX_GYRO, bhi160_mapping_matrix
	);

	/* Set "SIC" matrix.  TODO: Find out what this is about */
	bhy_set_sic_matrix(bhi160_sic_array);

	xSemaphoreGive(bhi160_mutex);

	/* ----------------------------------------- */

	while (1) {
		int ret = bhi160_fetch_fifo();
		if (ret == -EBUSY) {
			LOG_WARN("bhi160", "Could not acquire mutex for FIFO?");
			continue;
		} else if (ret < 0) {
			LOG_ERR("bhi160", "Unknown error: %d", -ret);
		}

		/*
		 * Wait for interrupt.  After two seconds, fetch FIFO anyway in
		 * case there are any diagnostics or errors.
		 *
		 * In the future, reads using epic_stream_read() might also
		 * trigger a FIFO fetch, from outside this task.
		 */
		ulTaskNotifyTake(pdTRUE, pdMS_TO_TICKS(2000));
	}
}