Commit cbfa0304 authored by oharboe's avatar oharboe
Browse files

4-bit ECC support for Marvell Kirkwood SOC

git-svn-id: svn://svn.berlios.de/openocd/trunk@1768 b42882b7-edfa-0310-969c-e2dbd0fdcd60
parent f34386ee
......@@ -7,7 +7,7 @@ METASOURCES = AUTO
noinst_LTLIBRARIES = libflash.la
libflash_la_SOURCES = \
flash.c lpc2000.c cfi.c non_cfi.c at91sam7.c \
str7x.c str9x.c aduc702x.c nand.c nand_ecc.c \
str7x.c str9x.c aduc702x.c nand.c nand_ecc.c nand_ecc_kw.c \
lpc3180_nand_controller.c stellaris.c str9xpec.c stm32x.c tms470.c \
ecos.c orion_nand.c s3c24xx_nand.c s3c2410_nand.c s3c2412_nand.c \
s3c2440_nand.c s3c2443_nand.c lpc288x.c ocl.c mflash.c pic32mx.c avrf.c
......
......@@ -1332,6 +1332,8 @@ static int handle_nand_write_command(struct command_context_s *cmd_ctx, char *cm
oob_format |= NAND_OOB_RAW | NAND_OOB_ONLY;
else if (!strcmp(args[i], "oob_softecc"))
oob_format |= NAND_OOB_SW_ECC;
else if (!strcmp(args[i], "oob_softecc_kw"))
oob_format |= NAND_OOB_SW_ECC_KW;
else
{
command_print(cmd_ctx, "unknown option: %s", args[i]);
......@@ -1355,7 +1357,7 @@ static int handle_nand_write_command(struct command_context_s *cmd_ctx, char *cm
page = malloc(p->page_size);
}
if (oob_format & (NAND_OOB_RAW | NAND_OOB_SW_ECC))
if (oob_format & (NAND_OOB_RAW | NAND_OOB_SW_ECC | NAND_OOB_SW_ECC_KW))
{
if (p->page_size == 512) {
oob_size = 16;
......@@ -1401,6 +1403,21 @@ static int handle_nand_write_command(struct command_context_s *cmd_ctx, char *cm
oob[eccpos[j++]] = ecc[1];
oob[eccpos[j++]] = ecc[2];
}
} else if (oob_format & NAND_OOB_SW_ECC_KW)
{
/*
* In this case eccpos is not used as
* the ECC data is always stored contigously
* at the end of the OOB area. It consists
* of 10 bytes per 512-byte data block.
*/
u32 i;
u8 *ecc = oob + oob_size - page_size/512 * 10;
memset(oob, 0xff, oob_size);
for (i = 0; i < page_size; i += 512) {
nand_calculate_ecc_kw(p, page+i, ecc);
ecc += 10;
}
}
else if (NULL != oob)
{
......
......@@ -200,6 +200,7 @@ enum oob_formats
NAND_OOB_ONLY = 0x2, /* only OOB data */
NAND_OOB_SW_ECC = 0x10, /* when writing, use SW ECC (as opposed to no ECC) */
NAND_OOB_HW_ECC = 0x20, /* when writing, use HW ECC (as opposed to no ECC) */
NAND_OOB_SW_ECC_KW = 0x40, /* when writing, use Marvell's Kirkwood bootrom format */
NAND_OOB_JFFS2 = 0x100, /* when writing, use JFFS2 OOB layout */
NAND_OOB_YAFFS2 = 0x100,/* when writing, use YAFFS2 OOB layout */
};
......@@ -210,6 +211,7 @@ extern int nand_read_page_raw(struct nand_device_s *device, u32 page, u8 *data,
extern int nand_write_page_raw(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size);
extern int nand_read_status(struct nand_device_s *device, u8 *status);
extern int nand_calculate_ecc(struct nand_device_s *device, const u8 *dat, u8 *ecc_code);
extern int nand_calculate_ecc_kw(struct nand_device_s *device, const u8 *dat, u8 *ecc_code);
extern int nand_register_commands(struct command_context_s *cmd_ctx);
extern int nand_init(struct command_context_s *cmd_ctx);
......
/*
* Reed-Solomon ECC handling for the Marvell Kirkwood SOC
* Copyright (C) 2009 Marvell Semiconductor, Inc.
*
* Authors: Lennert Buytenhek <buytenh@wantstofly.org>
* Nicolas Pitre <nico@cam.org>
*
* This file is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 or (at your option) any
* later version.
*
* This file is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <sys/types.h>
#include "nand.h"
/*****************************************************************************
* Arithmetic in GF(2^10) ("F") modulo x^10 + x^3 + 1.
*
* For multiplication, a discrete log/exponent table is used, with
* primitive element x (F is a primitive field, so x is primitive).
*/
#define MODPOLY 0x409 /* x^10 + x^3 + 1 in binary */
/*
* Maps an integer a [0..1022] to a polynomial b = gf_exp[a] in
* GF(2^10) mod x^10 + x^3 + 1 such that b = x ^ a. There's two
* identical copies of this array back-to-back so that we can save
* the mod 1023 operation when doing a GF multiplication.
*/
static uint16_t gf_exp[1023 + 1023];
/*
* Maps a polynomial b in GF(2^10) mod x^10 + x^3 + 1 to an index
* a = gf_log[b] in [0..1022] such that b = x ^ a.
*/
static uint16_t gf_log[1024];
static void gf_build_log_exp_table(void)
{
int i;
int p_i;
/*
* p_i = x ^ i
*
* Initialise to 1 for i = 0.
*/
p_i = 1;
for (i = 0; i < 1023; i++) {
gf_exp[i] = p_i;
gf_exp[i + 1023] = p_i;
gf_log[p_i] = i;
/*
* p_i = p_i * x
*/
p_i <<= 1;
if (p_i & (1 << 10))
p_i ^= MODPOLY;
}
}
/*****************************************************************************
* Reed-Solomon code
*
* This implements a (1023,1015) Reed-Solomon ECC code over GF(2^10)
* mod x^10 + x^3 + 1, shortened to (520,512). The ECC data consists
* of 8 10-bit symbols, or 10 8-bit bytes.
*
* Given 512 bytes of data, computes 10 bytes of ECC.
*
* This is done by converting the 512 bytes to 512 10-bit symbols
* (elements of F), interpreting those symbols as a polynomial in F[X]
* by taking symbol 0 as the coefficient of X^8 and symbol 511 as the
* coefficient of X^519, and calculating the residue of that polynomial
* divided by the generator polynomial, which gives us the 8 ECC symbols
* as the remainder. Finally, we convert the 8 10-bit ECC symbols to 10
* 8-bit bytes.
*
* The generator polynomial is hardcoded, as that is faster, but it
* can be computed by taking the primitive element a = x (in F), and
* constructing a polynomial in F[X] with roots a, a^2, a^3, ..., a^8
* by multiplying the minimal polynomials for those roots (which are
* just 'x - a^i' for each i).
*
* Note: due to unfortunate circumstances, the bootrom in the Kirkwood SOC
* expects the ECC to be computed backward, i.e. from the last byte down
* to the first one.
*/
int nand_calculate_ecc_kw(struct nand_device_s *device, const u8 *data, u8 *ecc)
{
unsigned int r7, r6, r5, r4, r3, r2, r1, r0;
int i;
static int tables_initialized = 0;
if (!tables_initialized) {
gf_build_log_exp_table();
tables_initialized = 1;
}
/*
* Load bytes 504..511 of the data into r.
*/
r0 = data[504];
r1 = data[505];
r2 = data[506];
r3 = data[507];
r4 = data[508];
r5 = data[509];
r6 = data[510];
r7 = data[511];
/*
* Shift bytes 503..0 (in that order) into r0, followed
* by eight zero bytes, while reducing the polynomial by the
* generator polynomial in every step.
*/
for (i = 503; i >= -8; i--) {
unsigned int d;
d = 0;
if (i >= 0)
d = data[i];
if (r7) {
u16 *t = gf_exp + gf_log[r7];
r7 = r6 ^ t[0x21c];
r6 = r5 ^ t[0x181];
r5 = r4 ^ t[0x18e];
r4 = r3 ^ t[0x25f];
r3 = r2 ^ t[0x197];
r2 = r1 ^ t[0x193];
r1 = r0 ^ t[0x237];
r0 = d ^ t[0x024];
} else {
r7 = r6;
r6 = r5;
r5 = r4;
r4 = r3;
r3 = r2;
r2 = r1;
r1 = r0;
r0 = d;
}
}
ecc[0] = r0;
ecc[1] = (r0 >> 8) | (r1 << 2);
ecc[2] = (r1 >> 6) | (r2 << 4);
ecc[3] = (r2 >> 4) | (r3 << 6);
ecc[4] = (r3 >> 2);
ecc[5] = r4;
ecc[6] = (r4 >> 8) | (r5 << 2);
ecc[7] = (r5 >> 6) | (r6 << 4);
ecc[8] = (r6 >> 4) | (r7 << 6);
ecc[9] = (r7 >> 2);
return 0;
}
......@@ -99,7 +99,7 @@ proc sheevaplug_reflash_uboot { } {
sheevaplug_init
nand probe 0
nand erase 0 0 4
nand write 0 uboot.bin 0 oob_softecc
nand write 0 uboot.bin 0 oob_softecc_kw
resume
}
......@@ -108,7 +108,7 @@ proc sheevaplug_load_uboot { } {
# load u-Boot into RAM and execute it
sheevaplug_init
load_image /tmp/uboot.elf
load_image uboot.elf
verify_image uboot.elf
resume 0x00600000
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment