max32xxx.c 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/***************************************************************************
 *   Copyright (C) 2016 by Maxim Integrated                                *
 *   Kevin Gillespie <kevin.gillespie@maximintegrated.com>                 *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
 ***************************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "imp.h"
#include <target/algorithm.h>
#include <target/armv7m.h>

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
/* Register addresses */
#define FLC_ADDR				0x00000000
#define FLC_CLKDIV				0x00000004
#define FLC_CN					0x00000008
#define FLC_PR1E_ADDR			0x0000000C
#define FLC_PR2S_ADDR			0x00000010
#define FLC_PR2E_ADDR			0x00000014
#define FLC_PR3S_ADDR			0x00000018
#define FLC_PR3E_ADDR			0x0000001C
#define FLC_MD					0x00000020
#define FLC_INT					0x00000024
#define FLC_DATA0				0x00000030
#define FLC_DATA1				0x00000034
#define FLC_DATA2				0x00000038
#define FLC_DATA3				0x0000003C
#define FLC_BL_CTRL				0x00000170
#define FLC_PROT				0x00000300

#define ARM_PID_REG				0xE00FFFE0
#define MAX326XX_ID_REG			0x40000838
47 48

/* Register settings */
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#define FLC_INT_AF				0x00000002

#define FLC_CN_UNLOCK_MASK		0xF0000000
#define FLC_CN_UNLOCK_VALUE		0x20000000

#define FLC_CN_PEND				0x01000000
#define FLC_CN_ERASE_CODE_MASK	0x0000FF00
#define FLC_CN_ERASE_CODE_PGE	0x00005500
#define FLC_CN_ERASE_CODE_ME	0x0000AA00
#define FLC_CN_32BIT			0x00000010
#define FLC_CN_PGE				0x00000004
#define FLC_CN_ME				0x00000002
#define FLC_CN_WR				0x00000001
#define FLC_CN_PGE				0x00000004
#define FLC_CN_ME				0x00000002
#define FLC_CN_WR				0x00000001

#define FLC_BL_CTRL_23			0x00020000
#define FLC_BL_CTRL_IFREN		0x00000001

#define MASK_FLASH_BUSY			(0x048800E0 & ~0x04000000)
#define MASK_DISABLE_INTS		(0xFFFFFCFC)
#define MASK_FLASH_UNLOCKED		(0xF588FFEF & ~0x04000000)
#define MASK_FLASH_LOCK			(0xF588FFEF & ~0x04000000)
#define MASK_FLASH_ERASE		(0xF588FFEF & ~0x04000000)
#define MASK_FLASH_ERASED		(0xF48800EB & ~0x04000000)
#define MASK_ACCESS_VIOLATIONS	(0xFFFFFCFC)
#define MASK_FLASH_WRITE		(0xF588FFEF & ~0x04000000)
#define MASK_WRITE_ALIGNED		(0xF588FFEF & ~0x04000000)
#define MASK_WRITE_COMPLETE		(0xF488FFEE & ~0x04000000)
#define MASK_WRITE_BURST		(0xF588FFEF & ~0x04000000)
#define MASK_BURST_COMPLETE		(0xF488FFEE & ~0x04000000)
#define MASK_WRITE_REMAINING	(0xF588FFEF & ~0x04000000)
#define MASK_REMAINING_COMPLETE	(0xF488FFEE & ~0x04000000)
#define MASK_MASS_ERASE			(0xF588FFEF & ~0x04000000)
#define MASK_ERASE_COMPLETE		(0xF48800ED & ~0x04000000)

#define ARM_PID_DEFAULT_CM3		0x0000B4C3
#define ARM_PID_DEFAULT_CM4		0x0000B4C4
88
#define MAX326XX_ID				0x0000004D    
89

90 91 92 93 94 95 96 97
#define OPTIONS_128             0x01 /* Perform 128 bit flash writes */
#define OPTIONS_ENC             0x02 /* Encrypt the flash contents */
#define OPTIONS_AUTH            0x04 /* Authenticate the flash contents */
#define OPTIONS_COUNT           0x08 /* Add counter values to authentication */
#define OPTIONS_INTER           0x10 /* Interleave the authentication and count values*/
#define OPTIONS_RELATIVE_XOR    0x20 /* Only XOR the offset of the address when encrypting */    
#define OPTIONS_KEYSIZE         0x40 /* Use a 256 bit KEY */    

98 99 100 101 102 103 104 105 106 107
static int max32xxx_mass_erase(struct flash_bank *bank);

struct max32xxx_flash_bank {
	int probed;
	int max326xx;
	unsigned int flash_size;
	unsigned int flc_base;
	unsigned int sector_size;
	unsigned int clkdiv_value;
	unsigned int int_state;
108
	unsigned int options;
109 110 111
};

static const uint8_t write_code[] = {
Kevin Gillespie's avatar
Kevin Gillespie committed
112
#include "../../contrib/loaders/flash/max32xxx/max32xxx_write.inc"
113 114 115 116 117 118
};

FLASH_BANK_COMMAND_HANDLER(max32xxx_flash_bank_command)
{
	struct max32xxx_flash_bank *info;

119 120
	if ((CMD_ARGC < 10) || (CMD_ARGC > 10)) {
		LOG_ERROR("incorrect flash bank max32xxx configuration: <base> <size> 0 0 <target> <FLC base> <sector size> <clkdiv> <options>");
121 122 123 124 125 126 127 128
		return ERROR_FLASH_BANK_INVALID;
	}

	info = calloc(sizeof(struct max32xxx_flash_bank), 1);
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], info->flash_size);
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[6], info->flc_base);
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[7], info->sector_size);
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[8], info->clkdiv_value);
129
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[9], info->options);
130

131 132 133 134 135 136 137 138 139 140 141 142
	info->int_state = 0;
	bank->driver_priv = info;
	return ERROR_OK;
}

static int get_info(struct flash_bank *bank, char *buf, int buf_size)
{
	struct max32xxx_flash_bank *info = bank->driver_priv;

	if (info->probed == 0)
		return ERROR_FLASH_BANK_NOT_PROBED;

143
	snprintf(buf, buf_size, "\nMaxim Integrated max32xxx flash driver\n");
144 145 146
	return ERROR_OK;
}

147 148 149 150 151 152 153
static int max32xxx_flash_busy(uint32_t flash_cn)
{
	if (flash_cn & (FLC_CN_PGE | FLC_CN_ME | FLC_CN_WR))
		return ERROR_FLASH_BUSY;

	return ERROR_OK;
}
154 155 156 157 158

static int max32xxx_flash_op_pre(struct flash_bank *bank)
{
	struct target *target = bank->target;
	struct max32xxx_flash_bank *info = bank->driver_priv;
159
	uint32_t flash_cn;
160 161 162
	uint32_t bootloader;

	/* Check if the flash controller is busy */
163 164
	target_read_u32(target, info->flc_base + FLC_CN, &flash_cn);
	if (max32xxx_flash_busy(flash_cn))
165 166 167
		return ERROR_FLASH_BUSY;

	/* Refresh flash controller timing */
168
	target_write_u32(target, info->flc_base + FLC_CLKDIV, info->clkdiv_value);
169 170

	/* Clear and disable flash programming interrupts */
171 172
	target_read_u32(target, info->flc_base + FLC_INT, &info->int_state);
	target_write_u32(target, info->flc_base + FLC_INT, 0);
173 174

	/* Clear the lower bit in the bootloader configuration register in case flash page 0 has been replaced */
175 176
	if (target_read_u32(target, info->flc_base + FLC_BL_CTRL, &bootloader) != ERROR_OK) {
		LOG_ERROR("Read failure on FLC_BL_CTRL");
177 178
		return ERROR_FAIL;
	}
179 180 181
	if (bootloader & FLC_BL_CTRL_23) {
		LOG_WARNING("FLC_BL_CTRL indicates BL mode 2 or mode 3.");
		if (bootloader & FLC_BL_CTRL_IFREN) {
182
			LOG_WARNING("Flash page 0 swapped out, attempting to swap back in for programming");
183 184 185
			bootloader &= ~(FLC_BL_CTRL_IFREN);
			if (target_write_u32(target, info->flc_base + FLC_BL_CTRL, bootloader) != ERROR_OK) {
				LOG_ERROR("Write failure on FLC_BL_CTRL");
186 187
				return ERROR_FAIL;
			}
188 189
			if (target_read_u32(target, info->flc_base + FLC_BL_CTRL, &bootloader) != ERROR_OK) {
				LOG_ERROR("Read failure on FLC_BL_CTRL");
190 191
				return ERROR_FAIL;
			}
192
			if (bootloader & FLC_BL_CTRL_IFREN)
193 194 195 196 197
				LOG_ERROR("Unable to swap flash page 0 back in. Writes to page 0 will fail.");
		}
	}

	/* Unlock flash */
198 199 200
	flash_cn &= ~(FLC_CN_UNLOCK_MASK);
	flash_cn |= FLC_CN_UNLOCK_VALUE;
	target_write_u32(target, info->flc_base + FLC_CN, flash_cn);
201 202

	/* Confirm flash is unlocked */
203 204
	target_read_u32(target, info->flc_base + FLC_CN, &flash_cn);
	if ((flash_cn & FLC_CN_UNLOCK_VALUE) != FLC_CN_UNLOCK_VALUE)
205 206 207 208 209 210 211 212 213
		return ERROR_FAIL;

	return ERROR_OK;
}

static int max32xxx_flash_op_post(struct flash_bank *bank)
{
	struct target *target = bank->target;
	struct max32xxx_flash_bank *info = bank->driver_priv;
214
	uint32_t flash_cn;
215 216

	/* Restore flash programming interrupts */
217
	target_write_u32(target, info->flc_base + FLC_INT, info->int_state);
218 219

	/* Lock flash */
220 221 222
	target_read_u32(target, info->flc_base + FLC_CN, &flash_cn);
	flash_cn &= ~(FLC_CN_UNLOCK_MASK);
	target_write_u32(target, info->flc_base + FLC_CN, flash_cn);
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
	return ERROR_OK;
}

static int max32xxx_protect_check(struct flash_bank *bank)
{
	struct max32xxx_flash_bank *info = bank->driver_priv;
	struct target *target = bank->target;
	int i;
	uint32_t temp_reg;

	if (info->probed == 0)
		return ERROR_FLASH_BANK_NOT_PROBED;

	if (!info->max326xx) {
		for (i = 0; i < bank->num_sectors; i++)
			bank->sectors[i].is_protected = -1;

		return ERROR_FLASH_OPER_UNSUPPORTED;
	}

	/* Check the protection */
	for (i = 0; i < bank->num_sectors; i++) {
		if (i%32 == 0)
246
			target_read_u32(target, info->flc_base + FLC_PROT + ((i/32)*4), &temp_reg);
247 248 249 250 251 252 253 254 255 256 257 258

		if (temp_reg & (0x1 << i%32))
			bank->sectors[i].is_protected = 1;
		else
			bank->sectors[i].is_protected = 0;
	}
	return ERROR_OK;
}

static int max32xxx_erase(struct flash_bank *bank, int first, int last)
{
	int banknr;
259
	uint32_t flash_cn, flash_int;
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	struct max32xxx_flash_bank *info = bank->driver_priv;
	struct target *target = bank->target;
	int retval;
	int retry;

	if (bank->target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if (info->probed == 0)
		return ERROR_FLASH_BANK_NOT_PROBED;

	if ((first < 0) || (last < first) || (last >= bank->num_sectors))
		return ERROR_FLASH_SECTOR_INVALID;

	if ((first == 0) && (last == (bank->num_sectors - 1)))
		return max32xxx_mass_erase(bank);

	/* Prepare to issue flash operation */
	retval = max32xxx_flash_op_pre(bank);

	if (retval != ERROR_OK)
		return retval;

	int erased = 0;
	for (banknr = first; banknr <= last; banknr++) {

		/* Check the protection */
		if (bank->sectors[banknr].is_protected == 1) {
			LOG_WARNING("Flash sector %d is protected", banknr);
			continue;
		} else
			erased = 1;

		/* Address is first word in page */
296
		target_write_u32(target, info->flc_base + FLC_ADDR, banknr * info->sector_size);
297 298

		/* Write page erase code */
299 300 301
		target_read_u32(target, info->flc_base + FLC_CN, &flash_cn);
		flash_cn |= FLC_CN_ERASE_CODE_PGE;
		target_write_u32(target, info->flc_base + FLC_CN, flash_cn);
302 303

		/* Issue page erase command */
304 305
		flash_cn |= FLC_CN_PGE;
		target_write_u32(target, info->flc_base + FLC_CN, flash_cn);
306 307 308 309

		/* Wait until erase complete */
		retry = 1000;
		do {
310 311
			target_read_u32(target, info->flc_base + FLC_CN, &flash_cn);
		} while ((--retry > 0) && max32xxx_flash_busy(flash_cn));
312 313 314 315 316 317 318 319

		if (retry <= 0) {
			LOG_ERROR("Timed out waiting for flash page erase @ 0x%08x",
				banknr * info->sector_size);
			return ERROR_FLASH_OPERATION_FAILED;
		}

		/* Check access violations */
320 321
		target_read_u32(target, info->flc_base + FLC_INT, &flash_int);
		if (flash_int & FLC_INT_AF) {
322
			LOG_ERROR("Error erasing flash page %i", banknr);
323
			target_write_u32(target, info->flc_base + FLC_INT, 0);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
			max32xxx_flash_op_post(bank);
			return ERROR_FLASH_OPERATION_FAILED;
		}

		bank->sectors[banknr].is_erased = 1;
	}

	if (!erased) {
		LOG_ERROR("All pages protected %d to %d", first, last);
		max32xxx_flash_op_post(bank);
		return ERROR_FAIL;
	}

	if (max32xxx_flash_op_post(bank) != ERROR_OK)
		return ERROR_FAIL;

	return ERROR_OK;
}

static int max32xxx_protect(struct flash_bank *bank, int set, int first, int last)
{
	struct max32xxx_flash_bank *info = bank->driver_priv;
	struct target *target = bank->target;
	int page;
	uint32_t temp_reg;

	if (bank->target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if (info->probed == 0)
		return ERROR_FLASH_BANK_NOT_PROBED;

	if (!info->max326xx)
		return ERROR_FLASH_OPER_UNSUPPORTED;

	if ((first < 0) || (last < first) || (last >= bank->num_sectors))
		return ERROR_FLASH_SECTOR_INVALID;

	/* Setup the protection on the pages given */
	for (page = first; page <= last; page++) {
		if (set) {
			/* Set the write/erase bit for this page */
368
			target_read_u32(target, info->flc_base + FLC_PROT + (page/32), &temp_reg);
369
			temp_reg |= (0x1 << page%32);
370
			target_write_u32(target, info->flc_base + FLC_PROT + (page/32), temp_reg);
371 372 373
			bank->sectors[page].is_protected = 1;
		} else {
			/* Clear the write/erase bit for this page */
374
			target_read_u32(target, info->flc_base + FLC_PROT + (page/32), &temp_reg);
375
			temp_reg &= ~(0x1 << page%32);
376
			target_write_u32(target, info->flc_base + FLC_PROT + (page/32), temp_reg);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
			bank->sectors[page].is_protected = 0;
		}
	}

	return ERROR_OK;
}

static int max32xxx_write_block(struct flash_bank *bank, const uint8_t *buffer,
	uint32_t offset, uint32_t wcount)
{
	struct max32xxx_flash_bank *info = bank->driver_priv;
	struct target *target = bank->target;
	uint32_t buffer_size = 16384;
	struct working_area *source;
	struct working_area *write_algorithm;
	uint32_t address = bank->base + offset;
393
	struct reg_param reg_params[5];
394
	struct mem_param mem_param[2];
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	struct armv7m_algorithm armv7m_info;
	int retval = ERROR_OK;
	/* power of two, and multiple of word size */
	static const unsigned buf_min = 128;

	LOG_DEBUG("(bank=%p buffer=%p offset=%08" PRIx32 " wcount=%08" PRIx32 "",
		bank, buffer, offset, wcount);

	/* flash write code */
	if (target_alloc_working_area(target, sizeof(write_code), &write_algorithm) != ERROR_OK) {
		LOG_DEBUG("no working area for block memory writes");
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	/* plus a buffer big enough for this data */
	if (wcount * 4 < buffer_size)
		buffer_size = wcount * 4;

	/* memory buffer */
	while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
		buffer_size /= 2;

		if (buffer_size <= buf_min) {
			target_free_working_area(target, write_algorithm);
			return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
		}

		LOG_DEBUG("retry target_alloc_working_area(%s, size=%u)",
			target_name(target), (unsigned) buffer_size);
	}

	target_write_buffer(target, write_algorithm->address, sizeof(write_code),
		write_code);

	armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
	armv7m_info.core_mode = ARM_MODE_THREAD;
	init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
	init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
	init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
	init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
435
	init_reg_param(&reg_params[4], "sp", 32, PARAM_OUT);
436 437 438

	buf_set_u32(reg_params[0].value, 0, 32, source->address);
	buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
439 440 441
	buf_set_u32(reg_params[2].value, 0, 32, wcount*4);
	buf_set_u32(reg_params[3].value, 0, 32, address);
	buf_set_u32(reg_params[4].value, 0, 32, source->address + source->size);
442

443
	/* mem_params for options */
444 445
	init_mem_param(&mem_param[0], source->address + (source->size - 8 - 128), 4, PARAM_OUT);
	init_mem_param(&mem_param[1], source->address + (source->size - 4 - 128), 4, PARAM_OUT);
446
	buf_set_u32(mem_param[0].value, 0, 32, info->options);
447
	buf_set_u32(mem_param[1].value, 0, 32, info->flc_base);
448

449
	/* leave room for stack, 32-bit options and encryption buffer */
450 451
	retval = target_run_flash_async_algorithm(target, buffer, wcount*4, 1, 2, mem_param,
		5, reg_params, source->address, (source->size - 8 - 256), write_algorithm->address, 0, &armv7m_info);
452 453 454 455 456 457 458 459 460 461

	if (retval == ERROR_FLASH_OPERATION_FAILED)
		LOG_ERROR("error %d executing max32xxx flash write algorithm", retval);

	target_free_working_area(target, write_algorithm);
	target_free_working_area(target, source);
	destroy_reg_param(&reg_params[0]);
	destroy_reg_param(&reg_params[1]);
	destroy_reg_param(&reg_params[2]);
	destroy_reg_param(&reg_params[3]);
462
    destroy_reg_param(&reg_params[4]);
463 464 465 466 467 468 469 470
	return retval;
}

static int max32xxx_write(struct flash_bank *bank, const uint8_t *buffer,
	uint32_t offset, uint32_t count)
{
	struct max32xxx_flash_bank *info = bank->driver_priv;
	struct target *target = bank->target;
471
	uint32_t flash_cn, flash_int;
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	uint32_t address = offset;
	uint32_t remaining = count;
	uint32_t words_remaining;
	int retval;
	int retry;

	if (bank->target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	LOG_DEBUG("bank=%p buffer=%p offset=%08" PRIx32 " count=%08" PRIx32 "",
		bank, buffer, offset, count);

	if (info->probed == 0)
		return ERROR_FLASH_BANK_NOT_PROBED;

489
	if ((info->options & OPTIONS_128) == 0) {
490 491 492 493 494 495 496 497 498
		if (offset & 0x3) {
			LOG_ERROR("offset size must be 32-bit aligned");
			return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
		}
	} else {
		if (offset & 0xF) {
			LOG_ERROR("offset size must be 128-bit aligned");
			return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
		}
499 500 501 502 503 504 505 506
	}

	if (offset + count > bank->size)
		return ERROR_FLASH_DST_OUT_OF_BANK;

	/* Prepare to issue flash operation */
	retval = max32xxx_flash_op_pre(bank);

507 508
	if (retval != ERROR_OK) {
		max32xxx_flash_op_post(bank);
509
		return retval;
510
	}
511

512
	if (remaining >= 16) {
513
		/* try using a block write */
514 515

		/* 128-bit align the words_remaining */
516 517
		words_remaining = remaining / 16;
		words_remaining *= 4;
518 519 520

		/* Algorithm will pad with 0xFF */
		// words_remaining -= words_remaining % 4;
521

522
		retval = max32xxx_write_block(bank, buffer, offset, words_remaining);
523
		if (retval != ERROR_OK) {
524 525 526 527 528
			if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
				if(info->options & OPTIONS_ENC) {
					LOG_ERROR("Must use algorithm in working area for encryption");
					return ERROR_FLASH_OPERATION_FAILED;
				}
529
				LOG_DEBUG("writing flash word-at-a-time");
530
			} else {
531 532 533 534
				max32xxx_flash_op_post(bank);
				return ERROR_FLASH_OPERATION_FAILED;
			}
		} else {
535
			/* all words_remaining have been written */
536 537 538 539 540 541
			buffer += words_remaining * 4;
			address += words_remaining * 4;
			remaining -= words_remaining * 4;
		}
	}

542
	if (((info->options & OPTIONS_128) == 0) && (remaining >= 4)) {
543 544 545 546
		/* write in 32-bit units*/
		target_read_u32(target, info->flc_base + FLC_CN, &flash_cn);
		flash_cn |= FLC_CN_32BIT;
		target_write_u32(target, info->flc_base + FLC_CN, flash_cn);
547

548 549 550 551 552
		while (remaining >= 4) {
			target_write_u32(target, info->flc_base + FLC_ADDR, address);
			target_write_buffer(target, info->flc_base + FLC_DATA0, 4, buffer);
			flash_cn |= FLC_CN_WR;
			target_write_u32(target, info->flc_base + FLC_CN, flash_cn);
553 554 555 556
			/* Wait until flash operation is complete */
			retry = 10;

			do {
557 558
				target_read_u32(target, info->flc_base + FLC_CN, &flash_cn);
			} while ((--retry > 0) && max32xxx_flash_busy(flash_cn));
559 560 561

			if (retry <= 0) {
				LOG_ERROR("Timed out waiting for flash write @ 0x%08x", address);
562
				max32xxx_flash_op_post(bank);
563 564 565 566 567 568 569 570 571
				return ERROR_FLASH_OPERATION_FAILED;
			}

			buffer += 4;
			address += 4;
			remaining -= 4;
		}
	}

572
	if ((info->options & OPTIONS_128) && (remaining >= 16)) {
573 574 575 576
		/* write in 128-bit units */
		target_read_u32(target, info->flc_base + FLC_CN, &flash_cn);
		flash_cn &= ~(FLC_CN_32BIT);
		target_write_u32(target, info->flc_base + FLC_CN, flash_cn);
577 578

		while (remaining >= 16) {
579 580
			target_write_u32(target, info->flc_base + FLC_ADDR, address);

581 582 583
			if ((address & 0xFFF) == 0)
				LOG_DEBUG("Writing @ 0x%08x", address);

584 585 586
			target_write_buffer(target, info->flc_base + FLC_DATA0, 16, buffer);
			flash_cn |= FLC_CN_WR;
			target_write_u32(target, info->flc_base + FLC_CN, flash_cn);
587 588 589 590
			/* Wait until flash operation is complete */
			retry = 10;

			do {
591 592
				target_read_u32(target, info->flc_base + FLC_CN, &flash_cn);
			} while ((--retry > 0) && max32xxx_flash_busy(flash_cn));
593 594 595

			if (retry <= 0) {
				LOG_ERROR("Timed out waiting for flash write @ 0x%08x", address);
596
				max32xxx_flash_op_post(bank);
597 598 599 600 601 602 603 604 605
				return ERROR_FLASH_OPERATION_FAILED;
			}

			buffer += 16;
			address += 16;
			remaining -= 16;
		}
	}

606
	if (((info->options & OPTIONS_128) == 0) && remaining > 0) {
607 608 609 610
		/* write remaining bytes in a 32-bit unit */
		target_read_u32(target, info->flc_base + FLC_CN, &flash_cn);
		flash_cn |= FLC_CN_32BIT;
		target_write_u32(target, info->flc_base + FLC_CN, flash_cn);
611

612 613
		uint8_t last_word[4] = {0xFF, 0xFF, 0xFF, 0xFF};
		int i = 0;
614

615 616 617 618 619
		while (remaining > 0) {
			last_word[i++] = *buffer;
			buffer++;
			remaining--;
		}
620

621 622 623 624
		target_write_u32(target, info->flc_base + FLC_ADDR, address);
		target_write_buffer(target, info->flc_base + FLC_DATA0, 4, last_word);
		flash_cn |= FLC_CN_WR;
		target_write_u32(target, info->flc_base + FLC_CN, flash_cn);
625

626 627
		/* Wait until flash operation is complete */
		retry = 10;
628

629 630 631 632 633 634
		do {
			target_read_u32(target, info->flc_base + FLC_CN, &flash_cn);
		} while ((--retry > 0) && max32xxx_flash_busy(flash_cn));

		if (retry <= 0) {
			LOG_ERROR("Timed out waiting for flash write @ 0x%08x", address);
635
			max32xxx_flash_op_post(bank);
636
			return ERROR_FLASH_OPERATION_FAILED;
637 638 639
		}
	}

640
	if ((info->options & OPTIONS_128) && remaining > 0) {
641 642 643 644 645 646
		/* write remaining bytes in a 128-bit unit */
		if (target_read_u32(target, info->flc_base + FLC_CN, &flash_cn) != ERROR_OK) {
			max32xxx_flash_op_post(bank);
			return ERROR_FAIL;
		}

647
		target_read_u32(target, info->flc_base + FLC_CN, &flash_cn);
648 649 650 651 652 653 654
		flash_cn &= ~(FLC_CN_32BIT);
		target_write_u32(target, info->flc_base + FLC_CN, flash_cn);

		uint8_t last_words[16] = {0xFF, 0xFF, 0xFF, 0xFF,
			0xFF, 0xFF, 0xFF, 0xFF,
			0xFF, 0xFF, 0xFF, 0xFF,
			0xFF, 0xFF, 0xFF, 0xFF};
655 656 657 658

		int i = 0;

		while (remaining > 0) {
659
			last_words[i++] = *buffer;
660 661 662 663
			buffer++;
			remaining--;
		}

664 665 666 667 668 669 670 671
		target_write_u32(target, info->flc_base + FLC_ADDR, address);
		target_write_buffer(target, info->flc_base + FLC_DATA0, 4, last_words);
		target_write_buffer(target, info->flc_base + FLC_DATA0 + 4, 4, last_words + 4);
		target_write_buffer(target, info->flc_base + FLC_DATA0 + 8, 4, last_words + 8);
		target_write_buffer(target, info->flc_base + FLC_DATA0 + 12, 4, last_words + 12);
		flash_cn |= FLC_CN_WR;
		target_write_u32(target, info->flc_base + FLC_CN, flash_cn);

672 673 674
		/* Wait until flash operation is complete */
		retry = 10;
		do {
675 676 677 678 679
			if (target_read_u32(target, info->flc_base + FLC_CN, &flash_cn) != ERROR_OK) {
				max32xxx_flash_op_post(bank);
				return ERROR_FAIL;
			}
		} while ((--retry > 0) && (flash_cn & FLC_CN_PEND));
680 681 682

		if (retry <= 0) {
			LOG_ERROR("Timed out waiting for flash write @ 0x%08x", address);
683
			max32xxx_flash_op_post(bank);
684 685 686 687 688
			return ERROR_FLASH_OPERATION_FAILED;
		}
	}

	/* Check access violations */
689 690
	target_read_u32(target, info->flc_base + FLC_INT, &flash_int);
	if (flash_int & FLC_INT_AF) {
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
		LOG_ERROR("Flash Error writing 0x%x bytes at 0x%08x", count, offset);
		max32xxx_flash_op_post(bank);
		return ERROR_FLASH_OPERATION_FAILED;
	}

	if (max32xxx_flash_op_post(bank) != ERROR_OK)
		return ERROR_FAIL;

	return ERROR_OK;
}

static int max32xxx_probe(struct flash_bank *bank)
{
	struct max32xxx_flash_bank *info = bank->driver_priv;
	struct target *target = bank->target;
	uint32_t arm_id[2];
	uint16_t arm_pid;

	if (bank->sectors) {
		free(bank->sectors);
		bank->sectors = NULL;
	}

	/* provide this for the benefit of the NOR flash framework */
	bank->size = info->flash_size;
	bank->num_sectors = info->flash_size / info->sector_size;
	bank->sectors = calloc(bank->num_sectors, sizeof(struct flash_sector));

	for (int i = 0; i < bank->num_sectors; i++) {
		bank->sectors[i].offset = i * info->sector_size;
		bank->sectors[i].size = info->sector_size;
		bank->sectors[i].is_erased = -1;
		bank->sectors[i].is_protected = -1;
	}

	/* Probe to determine if this part is in the max326xx family */
	info->max326xx = 0;
	target_read_u32(target, ARM_PID_REG, &arm_id[0]);
	target_read_u32(target, ARM_PID_REG+4, &arm_id[1]);
	arm_pid = (arm_id[1] << 8) + arm_id[0];
	LOG_DEBUG("arm_pid = 0x%x", arm_pid);

	if ((arm_pid == ARM_PID_DEFAULT_CM3) || arm_pid == ARM_PID_DEFAULT_CM4) {
		uint32_t max326xx_id;
		target_read_u32(target, MAX326XX_ID_REG, &max326xx_id);
		LOG_DEBUG("max326xx_id = 0x%x", max326xx_id);
		max326xx_id = ((max326xx_id & 0xFF000000) >> 24);
		if (max326xx_id == MAX326XX_ID)
			info->max326xx = 1;
	}
	LOG_DEBUG("info->max326xx = %d", info->max326xx);

	/* Initialize the protection bits for each flash page */
	if (max32xxx_protect_check(bank) == ERROR_FLASH_OPER_UNSUPPORTED)
745
		LOG_DEBUG("Flash protection not supported on this device");
746 747 748 749 750 751 752 753 754

	info->probed = 1;
	return ERROR_OK;
}

static int max32xxx_mass_erase(struct flash_bank *bank)
{
	struct target *target = NULL;
	struct max32xxx_flash_bank *info = NULL;
755
	uint32_t flash_cn, flash_int;
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
	int retval;
	int retry;
	info = bank->driver_priv;
	target = bank->target;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if (info->probed == 0)
		return ERROR_FLASH_BANK_NOT_PROBED;

	int not_protected = 0;
	for (int i = 0; i < bank->num_sectors; i++) {
		if (bank->sectors[i].is_protected == 1)
			LOG_WARNING("Flash sector %d is protected", i);
		else
			not_protected = 1;
	}

	if (!not_protected) {
		LOG_ERROR("All pages protected");
		return ERROR_FAIL;
	}

	/* Prepare to issue flash operation */
	retval = max32xxx_flash_op_pre(bank);

	if (retval != ERROR_OK)
		return retval;

	/* Write mass erase code */
789 790 791
	target_read_u32(target, info->flc_base + FLC_CN, &flash_cn);
	flash_cn |= FLC_CN_ERASE_CODE_ME;
	target_write_u32(target, info->flc_base + FLC_CN, flash_cn);
792 793

	/* Issue mass erase command */
794 795
	flash_cn |= FLC_CN_ME;
	target_write_u32(target, info->flc_base + FLC_CN, flash_cn);
796 797 798 799

	/* Wait until erase complete */
	retry = 1000;
	do {
800 801
		target_read_u32(target, info->flc_base + FLC_CN, &flash_cn);
	} while ((--retry > 0) && max32xxx_flash_busy(flash_cn));
802 803 804 805 806 807 808

	if (retry <= 0) {
		LOG_ERROR("Timed out waiting for flash mass erase");
		return ERROR_FLASH_OPERATION_FAILED;
	}

	/* Check access violations */
809 810
	target_read_u32(target, info->flc_base + FLC_INT, &flash_int);
	if (flash_int & FLC_INT_AF) {
811
		LOG_ERROR("Error mass erasing");
812
		target_write_u32(target, info->flc_base + FLC_INT, 0);
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
		return ERROR_FLASH_OPERATION_FAILED;
	}

	if (max32xxx_flash_op_post(bank) != ERROR_OK)
		return ERROR_FAIL;

	return ERROR_OK;
}

COMMAND_HANDLER(max32xxx_handle_mass_erase_command)
{
	int i;
	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);

	if (CMD_ARGC < 1) {
		command_print(CMD_CTX, "max32xxx mass_erase <bank>");
		return ERROR_OK;
	}

	if (ERROR_OK != retval)
		return retval;

	if (max32xxx_mass_erase(bank) == ERROR_OK) {
		/* set all sectors as erased */
		for (i = 0; i < bank->num_sectors; i++)
			bank->sectors[i].is_erased = 1;

		command_print(CMD_CTX, "max32xxx mass erase complete");
	} else
		command_print(CMD_CTX, "max32xxx mass erase failed");

	return ERROR_OK;
}

COMMAND_HANDLER(max32xxx_handle_protection_set_command)
{
	struct flash_bank *bank;
	int retval;
	struct max32xxx_flash_bank *info;
	uint32_t addr, len;

	if (CMD_ARGC != 3) {
		command_print(CMD_CTX, "max32xxx protection_set <bank> <addr> <size>");
		return ERROR_OK;
	}

	retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;
	info = bank->driver_priv;

	/* Convert the range to the page numbers */
	if (1 != sscanf(CMD_ARGV[1], "0x%"SCNx32, &addr)) {
		LOG_WARNING("Error parsing address");
		command_print(CMD_CTX, "max32xxx protection_set <bank> <addr> <size>");
		return ERROR_FAIL;
	}
	/* Mask off the top portion on the address */
	addr = (addr & 0x0FFFFFFF);

	if (1 != sscanf(CMD_ARGV[2], "0x%"SCNx32, &len)) {
		LOG_WARNING("Error parsing length");
		command_print(CMD_CTX, "max32xxx protection_set <bank> <addr> <size>");
		return ERROR_FAIL;
	}

	/* Check the address is in the range of the flash */
	if ((addr+len) >= info->flash_size)
		return ERROR_FLASH_SECTOR_INVALID;

	if (len == 0)
		return ERROR_OK;

	/* Convert the address and length to the page boundaries */
	addr = addr - (addr % info->sector_size);
	if (len % info->sector_size)
		len = len + info->sector_size - (len % info->sector_size);

	/* Convert the address and length to page numbers */
	addr = (addr / info->sector_size);
	len = addr + (len / info->sector_size) - 1;

	if (max32xxx_protect(bank, 1, addr, len) == ERROR_OK)
		command_print(CMD_CTX, "max32xxx protection set complete");
	else
		command_print(CMD_CTX, "max32xxx protection set failed");

	return ERROR_OK;
}

COMMAND_HANDLER(max32xxx_handle_protection_clr_command)
{
	struct flash_bank *bank;
	int retval;
	struct max32xxx_flash_bank *info;
	uint32_t addr, len;

	if (CMD_ARGC != 3) {
		command_print(CMD_CTX, "max32xxx protection_clr <bank> <addr> <size>");
		return ERROR_OK;
	}

	retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;
	info = bank->driver_priv;

	/* Convert the range to the page numbers */
	if (1 != sscanf(CMD_ARGV[1], "0x%"SCNx32, &addr)) {
		LOG_WARNING("Error parsing address");
		command_print(CMD_CTX, "max32xxx protection_clr <bank> <addr> <size>");
		return ERROR_FAIL;
	}
	/* Mask off the top portion on the address */
	addr = (addr & 0x0FFFFFFF);

	if (1 != sscanf(CMD_ARGV[2], "0x%"SCNx32, &len)) {
		LOG_WARNING("Error parsing length");
		command_print(CMD_CTX, "max32xxx protection_clr <bank> <addr> <size>");
		return ERROR_FAIL;
	}

	/* Check the address is in the range of the flash */
	if ((addr+len) >= info->flash_size)
		return ERROR_FLASH_SECTOR_INVALID;

	if (len == 0)
		return ERROR_OK;

	/* Convert the address and length to the page boundaries */
	addr = addr - (addr % info->sector_size);
	if (len % info->sector_size)
		len = len + info->sector_size - (len % info->sector_size);

	/* Convert the address and length to page numbers */
	addr = (addr / info->sector_size);
	len = addr + (len / info->sector_size) - 1;

	if (max32xxx_protect(bank, 0, addr, len) == ERROR_OK)
		command_print(CMD_CTX, "max32xxx protection clear complete");
	else
		command_print(CMD_CTX, "max32xxx protection clear failed");

	return ERROR_OK;
}

COMMAND_HANDLER(max32xxx_handle_protection_check_command)
{
	struct flash_bank *bank;
	int retval;
	struct max32xxx_flash_bank *info;
	int i;

	if (CMD_ARGC < 1) {
		command_print(CMD_CTX, "max32xxx protection_check <bank>");
		return ERROR_OK;
	}

	retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;
	info = bank->driver_priv;

	/* Update the protection array */
	retval = max32xxx_protect_check(bank);
	if (ERROR_OK != retval) {
		LOG_WARNING("Error updating the protection array");
		return retval;
	}

	LOG_WARNING("s:<sector number> a:<address> p:<protection bit>");
	for (i = 0; i < bank->num_sectors; i += 4) {
		LOG_WARNING("s:%03d a:0x%06x p:%d | s:%03d a:0x%06x p:%d | s:%03d a:0x%06x p:%d | s:%03d a:0x%06x p:%d",
987 988 989 990
			(i+0), (i+0)*info->sector_size, bank->sectors[(i+0)].is_protected,
			(i+1), (i+1)*info->sector_size, bank->sectors[(i+1)].is_protected,
			(i+2), (i+2)*info->sector_size, bank->sectors[(i+2)].is_protected,
			(i+3), (i+3)*info->sector_size, bank->sectors[(i+3)].is_protected);
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
	}

	return ERROR_OK;
}

static const struct command_registration max32xxx_exec_command_handlers[] = {
	{
		.name = "mass_erase",
		.handler = max32xxx_handle_mass_erase_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "mass erase flash",
	},
	{
		.name = "protection_set",
		.handler = max32xxx_handle_protection_set_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id addr size",
		.help = "set flash protection for address range",
	},
	{
		.name = "protection_clr",
		.handler = max32xxx_handle_protection_clr_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id addr size",
		.help = "clear flash protection for address range",
	},
	{
		.name = "protection_check",
		.handler = max32xxx_handle_protection_check_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "check flash protection",
	},
	COMMAND_REGISTRATION_DONE
};

static const struct command_registration max32xxx_command_handlers[] = {
	{
		.name = "max32xxx",
		.mode = COMMAND_EXEC,
		.help = "max32xxx flash command group",
		.chain = max32xxx_exec_command_handlers,
1034
		.usage = "",
1035 1036 1037 1038
	},
	COMMAND_REGISTRATION_DONE
};

1039
const struct flash_driver max32xxx_flash = {
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	.name = "max32xxx",
	.commands = max32xxx_command_handlers,
	.flash_bank_command = max32xxx_flash_bank_command,
	.erase = max32xxx_erase,
	.protect = max32xxx_protect,
	.write = max32xxx_write,
	.read = default_flash_read,
	.probe = max32xxx_probe,
	.auto_probe = max32xxx_probe,
	.erase_check = default_flash_blank_check,
	.protect_check = max32xxx_protect_check,
	.info = get_info,
1052
	.free_driver_priv = default_flash_free_driver_priv,
1053
};