binarybuffer.c 8.71 KB
Newer Older
1
2
3
4
/***************************************************************************
 *   Copyright (C) 2004, 2005 by Dominic Rath                              *
 *   Dominic.Rath@gmx.de                                                   *
 *                                                                         *
5
 *   Copyright (C) 2007,2008 yvind Harboe                                 *
6
7
 *   oyvind.harboe@zylin.com                                               *
 *                                                                         *
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/
23
24
25
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
26
27
28
29
30
31
32
33
34

#include <stdlib.h>
#include <string.h>

#include "types.h"
#include "log.h"

#include "binarybuffer.h"

35
const unsigned char bit_reverse_table256[] =
36
{
37
38
39
40
41
  0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
  0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
  0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
  0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
  0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
42
  0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
43
  0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
44
45
  0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
  0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
46
  0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
47
48
  0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
  0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
49
  0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
50
  0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
51
  0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
52
53
54
55
56
57
  0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};


u8* buf_cpy(u8 *from, u8 *to, int size)
{
58
	unsigned int num_bytes = CEIL(size, 8);
59
60
61
62
63
64
65
	unsigned int i;

	if (from == NULL)
		return NULL;

	for (i = 0; i < num_bytes; i++)
		to[i] = from[i];
66
67

	/* mask out bits that don't belong to the buffer */
68
69
70
71
	if (size % 8)
	{
		to[size / 8] &= (0xff >> (8 - (size % 8)));
	}
72
73
74
75
76
77
78
79
80
81
82
83
84
85

	return to;
}

int buf_cmp(u8 *buf1, u8 *buf2, int size)
{
	int num_bytes = CEIL(size, 8);
	int i;

	if (!buf1 || !buf2)
		return 1;

	for (i = 0; i < num_bytes; i++)
	{
86
87
88
89
90
91
92
93
94
95
96
97
		/* last byte */
		/* mask out bits that don't really belong to the buffer if size isn't a multiple of 8 bits */
		if ((size % 8) && (i == num_bytes -1 ))
		{
			if ((buf1[i] & ((1 << (size % 8)) - 1)) != (buf2[i] & ((1 << (size % 8)) - 1)))
				return 1;
		}
		else
		{
			if (buf1[i] != buf2[i])
				return 1;
		}
98
99
100
101
102
103
104
105
106
107
108
109
	}

	return 0;
}

int buf_cmp_mask(u8 *buf1, u8 *buf2, u8 *mask, int size)
{
	int num_bytes = CEIL(size, 8);
	int i;

	for (i = 0; i < num_bytes; i++)
	{
110
111
112
113
		/* last byte */
		/* mask out bits that don't really belong to the buffer if size isn't a multiple of 8 bits */
		if ((size % 8) && (i == num_bytes -1 ))
		{
114
			if ((buf1[i] & ((1 << (size % 8)) - 1) & mask[i]) !=
115
				(buf2[i] & ((1 << (size % 8)) - 1) & mask[i]))
116
117
118
119
120
121
122
				return 1;
		}
		else
		{
			if ((buf1[i] & mask[i]) != (buf2[i] & mask[i]))
				return 1;
		}
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
	}

	return 0;
}

u8* buf_set_ones(u8 *buf, int count)
{
	int num_bytes = CEIL(count, 8);
	int i;

	for (i = 0; i < num_bytes; i++)
	{
		if (count >= 8)
			buf[i] = 0xff;
		else
			buf[i] = (1 << count) - 1;
139

140
141
		count -= 8;
	}
142

143
144
145
146
147
148
149
	return buf;
}

u8* buf_set_buf(u8 *src, int src_start, u8 *dst, int dst_start, int len)
{
	int src_idx = src_start, dst_idx = dst_start;
	int i;
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
	for (i = 0; i < len; i++)
	{
		if (((src[src_idx/8] >> (src_idx % 8)) & 1) == 1)
			dst[dst_idx/8] |= 1 << (dst_idx%8);
		else
			dst[dst_idx/8] &= ~(1 << (dst_idx%8));
		dst_idx++;
		src_idx++;
	}

	return dst;
}

u32 flip_u32(u32 value, unsigned int num)
{
	u32 c;
167
168
169

	c = (bit_reverse_table256[value & 0xff] << 24) |
		(bit_reverse_table256[(value >> 8) & 0xff] << 16) |
170
171
172
173
174
175
176
177
178
		(bit_reverse_table256[(value >> 16) & 0xff] << 8) |
		(bit_reverse_table256[(value >> 24) & 0xff]);

	if (num < 32)
		c = c >> (32 - num);

	return c;
}

179
int ceil_f_to_u32(float x)
180
{
181
	u32 y;
182

183
184
	if (x < 0)	/* return zero for negative numbers */
		return 0;
185

186
	y = x;	/* cut off fraction */
187

188
189
	if ((x - y) > 0.0) /* if there was a fractional part, increase by one */
		y++;
190

191
192
193
	return y;
}

194
char* buf_to_str(const u8 *buf, int buf_len, int radix)
195
{
196
	const char *DIGITS = "0123456789ABCDEF";
197
198
199
200
201
202
203
204
	float factor;
	char *str;
	int str_len;
	int b256_len = CEIL(buf_len, 8);
	u32 tmp;

	int j; /* base-256 digits */
	int i; /* output digits (radix) */
205

206
	if (radix == 16)
207
	{
208
		factor = 2.0;   /* log(256) / log(16) = 2.0 */
209
	}
210
211
212
	else if (radix == 10)
	{
		factor = 2.40824;   /* log(256) / log(10) = 2.40824 */
213
	}
214
215
216
217
218
219
	else if (radix == 8)
	{
		factor = 2.66667;	/* log(256) / log(8) = 2.66667 */
	}
	else
		return NULL;
220

221
222
	str_len = ceil_f_to_u32(CEIL(buf_len, 8) * factor);
	str = calloc(str_len + 1, 1);
223

224
	for (i = b256_len - 1; i >= 0; i--)
225
226
227
228
229
230
231
232
233
234
235
236
237
238
	{
		tmp = buf[i];
		if ((i == (buf_len / 8)) && (buf_len % 8))
			tmp &= (0xff >> (8 - (buf_len % 8)));

		for (j = str_len; j > 0; j--)
		{
			tmp += (u32)str[j-1] * 256;
			str[j-1] = (u8)(tmp % radix);
			tmp /= radix;
		}
	}

	for (j = 0; j < str_len; j++)
239
		str[j] = DIGITS[(int)str[j]];
240

241
	return str;
242
243
}

244
int str_to_buf(const char *str, int str_len, u8 *buf, int buf_len, int radix)
245
{
246
	char *charbuf;
247
	char tmp;
248
249
	float factor;
	u8 *b256_buf;
250
251
	int b256_len;

252
253
	int j; /* base-256 digits */
	int i; /* input digits (ASCII) */
254
255

	if (radix == 0)
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
	{
		/* identify radix, and skip radix-prefix (0, 0x or 0X) */
		if ((str[0] == '0') && (str[1] && ((str[1] == 'x') || (str[1] == 'X'))))
		{
			radix = 16;
			str += 2;
			str_len -= 2;
		}
		else if ((str[0] == '0') && (str_len != 1))
		{
			radix = 8;
			str += 1;
			str_len -= 1;
		}
		else
		{
			radix = 10;
		}
	}
275

276
277
278
279
280
281
282
	if (radix == 16)
		factor = 0.5; /* log(16) / log(256) = 0.5 */
	else if (radix == 10)
		factor = 0.41524; /* log(10) / log(256) = 0.41524 */
	else if (radix == 8)
		factor = 0.375; /* log(8) / log(256) = 0.375 */
	else
283
		return 0;
284
285
286
287
288

	/* copy to zero-terminated buffer */
	charbuf = malloc(str_len + 1);
	memcpy(charbuf, str, str_len);
	charbuf[str_len] = '\0';
289

290
291
292
	/* number of digits in base-256 notation */
	b256_len = ceil_f_to_u32(str_len * factor);
	b256_buf = calloc(b256_len, 1);
293

294
295
	/* go through zero terminated buffer */
	for (i = 0; charbuf[i]; i++)
296
	{
297
		tmp = charbuf[i];
298
299
300
301
302
303
304
		if ((tmp >= '0') && (tmp <= '9'))
			tmp = (tmp - '0');
		else if ((tmp >= 'a') && (tmp <= 'f'))
			tmp = (tmp - 'a' + 10);
		else if ((tmp >= 'A') && (tmp <= 'F'))
			tmp = (tmp - 'A' + 10);
		else continue;	/* skip characters other than [0-9,a-f,A-F] */
305

306
		if (tmp >= radix)
307
308
			continue;	/* skip digits invalid for the current radix */

309
		for (j = 0; j < b256_len; j++)
310
311
312
313
314
		{
			tmp += (u32)b256_buf[j] * radix;
			b256_buf[j] = (u8)(tmp & 0xFF);
			tmp >>= 8;
		}
315

316
	}
317

318
	for (j = 0; j < CEIL(buf_len, 8); j++)
319
320
321
322
323
324
	{
		if (j < b256_len)
			buf[j] = b256_buf[j];
		else
			buf[j] = 0;
	}
325
326
327
328

	/* mask out bits that don't belong to the buffer */
	if (buf_len % 8)
		buf[(buf_len / 8)] &= 0xff >> (8 - (buf_len % 8));
329

330
331
	free(b256_buf);
	free(charbuf);
332

333
	return i;
334
335
}

336
int buf_to_u32_handler(u8 *in_buf, void *priv, struct scan_field_s *field)
337
338
{
	u32 *dest = priv;
339

340
	*dest = buf_get_u32(in_buf, 0, 32);
341

342
343
	return ERROR_OK;
}