#include "card10.h" #include "pmic.h" #include "bosch.h" #include "display.h" #include "portexpander.h" #include "bhy_uc_driver.h" #include "Bosch_PCB_7183_di03_BMI160_BMM150-7183_di03.2.1.11696_170103.h" #include "bme680.h" #include "bma400.h" #include "bhy.h" #include "leds.h" #include "mxc_config.h" #include "board.h" #include "pb.h" #include "tmr_utils.h" #include "i2c.h" #include "rtc.h" #include "spi.h" #include "gpio.h" #include #include #include const gpio_cfg_t bhi_interrupt_pin = { PORT_0, PIN_13, GPIO_FUNC_IN, GPIO_PAD_PULL_UP }; static const gpio_cfg_t pwr_hold_pin = { PORT_0, PIN_30, GPIO_FUNC_OUT, GPIO_PAD_NONE }; void card10_init(void) { printf("card10 init...\n"); //Setup the I2CM I2C_Shutdown(MXC_I2C0_BUS0); I2C_Init(MXC_I2C0_BUS0, I2C_FAST_MODE, NULL); I2C_Shutdown(MXC_I2C1_BUS0); I2C_Init(MXC_I2C1_BUS0, I2C_FAST_MODE, NULL); GPIO_Init(); GPIO_Config(&pwr_hold_pin); GPIO_OutSet(&pwr_hold_pin); pmic_init(); pmic_set_led(0, 0); pmic_set_led(1, 0); pmic_set_led(2, 0); portexpander_init(); PB_Init(); TMR_Delay(MXC_TMR0, MSEC(1000), 0); // Enable 32 kHz output while (RTC_SquareWave( MXC_RTC, SQUARE_WAVE_ENABLED, F_32KHZ, NOISE_IMMUNE_MODE, NULL) == E_BUSY ) ; /* If we don't have a valid time yet, set it to 2019-01-01 */ if (RTC_GetSecond() < 1546300800UL) { while (RTC_Init(MXC_RTC, 1546300800UL, 0, NULL) == E_BUSY) ; } while (RTC_EnableRTCE(MXC_RTC) == E_BUSY) ; // Enable SPI sys_cfg_spi_t spi17y_master_cfg; spi17y_master_cfg.map = MAP_A; spi17y_master_cfg.ss0 = Enable; spi17y_master_cfg.ss1 = Disable; spi17y_master_cfg.ss2 = Disable; if (SPI_Init(SPI0, 0, SPI_SPEED, spi17y_master_cfg) != 0) { printf("Error configuring SPI\n"); while (1) ; } display_init(); leds_init(); GPIO_Config(&bhi_interrupt_pin); } static uint32_t ecg_read_reg(uint8_t reg) { spi_req_t req; uint8_t tx_data[] = { (reg << 1) | 1, 0, 0, 0 }; uint8_t rx_data[] = { 0, 0, 0, 0 }; req.tx_data = tx_data; req.rx_data = rx_data; req.len = 4; req.bits = 8; req.width = SPI17Y_WIDTH_1; req.ssel = 0; req.deass = 1; req.ssel_pol = SPI17Y_POL_LOW; req.tx_num = 0; req.rx_num = 0; SPI_MasterTrans(SPI0, &req); return (rx_data[1] << 16) | (rx_data[2] << 8) | rx_data[3]; } void card10_diag(void) { uint8_t dummy[1] = { 0 }; // "7-bit addresses 0b0000xxx and 0b1111xxx are reserved" for (int addr = 0x8; addr < 0x78; ++addr) { // A 0 byte write does not seem to work so always send a single byte. int res = I2C_MasterWrite(MXC_I2C0_BUS0, addr << 1, dummy, 1, 0); if (res == 1) { printf("Found (7 bit) address 0x%02x on I2C0\n", addr); } res = I2C_MasterWrite(MXC_I2C1_BUS0, addr << 1, dummy, 1, 0); if (res == 1) { printf("Found (7 bit) address 0x%02x on I2C1\n", addr); } } if (bhy_driver_init(bhy1_fw)) { printf("Failed to init bhy\n"); } else { /* wait for the bhy trigger the interrupt pin go down and up again */ while (GPIO_InGet(&bhi_interrupt_pin)) ; while (!GPIO_InGet(&bhi_interrupt_pin)) ; /* the remapping matrix for BHI and Magmetometer should be configured here to make sure rotation vector is */ /* calculated in a correct coordinates system. */ int8_t bhy_mapping_matrix_config[3 * 3] = { 0, -1, 0, 1, 0, 0, 0, 0, 1 }; int8_t mag_mapping_matrix_config[3 * 3] = { -1, 0, 0, 0, 1, 0, 0, 0, -1 }; bhy_mapping_matrix_set( PHYSICAL_SENSOR_INDEX_ACC, bhy_mapping_matrix_config ); bhy_mapping_matrix_set( PHYSICAL_SENSOR_INDEX_MAG, mag_mapping_matrix_config ); bhy_mapping_matrix_set( PHYSICAL_SENSOR_INDEX_GYRO, bhy_mapping_matrix_config ); /* the sic matrix should be calculated for customer platform by logging uncalibrated magnetometer data. */ /* the sic matrix here is only an example array (identity matrix). Customer should generate their own matrix. */ /* This affects magnetometer fusion performance. */ float sic_array[9] = { 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 }; bhy_set_sic_matrix(sic_array); } struct bme680_dev gas_sensor; gas_sensor.dev_id = BME680_I2C_ADDR_PRIMARY; gas_sensor.intf = BME680_I2C_INTF; gas_sensor.read = card10_bosch_i2c_read; gas_sensor.write = card10_bosch_i2c_write; gas_sensor.delay_ms = card10_bosch_delay; gas_sensor.amb_temp = 25; int8_t rslt = BME680_OK; rslt = bme680_init(&gas_sensor); if (rslt != BME680_OK) { printf("Failed to init BME680\n"); } struct bma400_dev bma; bma.intf_ptr = NULL; /* To attach your interface device reference */ bma.delay_ms = card10_bosch_delay; bma.dev_id = BMA400_I2C_ADDRESS_SDO_LOW; bma.read = card10_bosch_i2c_read_ex; bma.write = card10_bosch_i2c_write_ex; bma.intf = BMA400_I2C_INTF; rslt = bma400_init(&bma); if (rslt == BMA400_OK) { printf("BMA400 found with chip ID 0x%X\r\n", bma.chip_id); } #if 0 for(int i=0; i<0x20; i++) { uint32_t val = ecg_read_reg(i); printf("ECG: %02x: 0x%06x\n", i, val); } #else uint32_t val = ecg_read_reg(0xf); printf("ECG: %02x: 0x%06lx (should be 0x5139a0)\n", 0xf, val); #endif } void core1_start(void *isr) { MXC_GCR->gp0 = (uint32_t)isr; MXC_GCR->perckcn1 &= ~MXC_F_GCR_PERCKCN1_CPU1; } void core1_stop(void) { MXC_GCR->perckcn1 |= MXC_F_GCR_PERCKCN1_CPU1; } void card10_poll(void) { pmic_poll(); portexpander_poll(); } void card10_reset(void) { printf("Resetting ...\n"); /* * Give the UART fifo time to clear. * TODO: Do this properly */ for (int i = 0; i < 0x1000000; i++) { __asm volatile("nop"); } MXC_GCR->rstr0 = MXC_F_GCR_RSTR0_SYSTEM; } void GPIO0_IRQHandler(void) { GPIO_Handler(PORT_0); } void GPIO1_IRQHandler(void) { GPIO_Handler(PORT_1); } void GPIO2_IRQHandler(void) { GPIO_Handler(PORT_2); } void GPIO3_IRQHandler(void) { GPIO_Handler(PORT_3); }