max30001.c 9.8 KB
Newer Older
schneider's avatar
schneider committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include <stdio.h>
#include <string.h>

#include "gpio.h"
#include "pmic.h"
#include "spi.h"

#include "MAX30003.h"

#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"

#include "api/interrupt-sender.h"
#include "epicardium.h"
#include "modules/log.h"
#include "modules/modules.h"
#include "modules/stream.h"
19
#include "modules/mutex.h"
schneider's avatar
schneider committed
20
21
22
23
24
25
26
27
28
29
30
31

/* Interrupt Pin */
static const gpio_cfg_t max30001_interrupt_pin = {
	PORT_1, PIN_12, GPIO_FUNC_IN, GPIO_PAD_PULL_UP
};

static const gpio_cfg_t analog_switch = {
	PORT_0, PIN_31, GPIO_FUNC_OUT, GPIO_PAD_NONE
};

/* clang-format on */

32
/* MAX30001 Task ID */
schneider's avatar
schneider committed
33
34
static TaskHandle_t max30001_task_id = NULL;

35
/* MAX30001 Mutex */
36
static struct mutex max30001_mutex = { 0 };
schneider's avatar
schneider committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

/* Stream */
static struct stream_info max30001_stream;
;

/* Active */
static bool max30001_sensor_active = false;

static int ecg_enable(int sample_rate, bool enable_internal_pull);
static int ecg_disable(void);

/* -- API -------------------------------------------------------------- {{{ */
int epic_max30001_enable_sensor(struct max30001_sensor_config *config)
{
	int result = 0;

53
54
	mutex_lock(&max30001_mutex);
	hwlock_acquire(HWLOCK_SPI_ECG);
schneider's avatar
schneider committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

	struct stream_info *stream = &max30001_stream;
	;
	stream->item_size = sizeof(uint16_t);
	stream->queue =
		xQueueCreate(config->sample_buffer_len, stream->item_size);
	if (stream->queue == NULL) {
		result = -ENOMEM;
		goto out_free_both;
	}

	result = stream_register(SD_MAX30001_ECG, stream);
	if (result < 0) {
		vQueueDelete(stream->queue);
		goto out_free_both;
	}

	result = ecg_enable(config->sample_rate, config->bias);

	if (result < 0) {
		vQueueDelete(stream->queue);
		goto out_free_both;
	}

	if (config->usb) {
		GPIO_OutSet(&analog_switch); // USB
	} else {
		GPIO_OutClr(&analog_switch); // Wrist
	}

	max30001_sensor_active = true;
	result                 = SD_MAX30001_ECG;

out_free_both:
	hwlock_release(HWLOCK_SPI_ECG);
90
	mutex_unlock(&max30001_mutex);
schneider's avatar
schneider committed
91
92
93
94
95
96
97
	return result;
}

int epic_max30001_disable_sensor(void)
{
	int result = 0;

98
99
	mutex_lock(&max30001_mutex);
	hwlock_acquire(HWLOCK_SPI_ECG);
schneider's avatar
schneider committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

	struct stream_info *stream = &max30001_stream;
	result                     = stream_deregister(SD_MAX30001_ECG, stream);
	if (result < 0) {
		goto out_free_both;
	}

	vQueueDelete(stream->queue);
	stream->queue = NULL;
	result        = ecg_disable();
	if (result < 0) {
		goto out_free_both;
	}

	max30001_sensor_active = false;

	result = 0;
out_free_both:
	hwlock_release(HWLOCK_SPI_ECG);
119
	mutex_unlock(&max30001_mutex);
schneider's avatar
schneider committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
	return result;
}

/* }}} */

/* -- Driver ----------------------------------------------------------- {{{ */
/*
 * Handle a single packet from the FIFO.  For most sensors this means pushing
 * the sample into its sample queue.
 */
static void max30001_handle_samples(int16_t *sensor_data, int16_t n)
{
	if (max30001_stream.queue == NULL) {
		return;
	}

	while (n--) {
137
		uint16_t data = -*sensor_data++;
138
139
140
141

		/* Discard overflow.  See discussion in !316. */
		if (xQueueSend(max30001_stream.queue, &data, 0) != pdTRUE) {
			LOG_WARN("max30001", "queue full");
schneider's avatar
schneider committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
		}
	}
	api_interrupt_trigger(EPIC_INT_MAX30001_ECG);
}

/***** Functions *****/
static uint32_t ecg_read_reg(uint8_t reg)
{
	spi_req_t req;
	uint8_t tx_data[] = { (reg << 1) | 1, 0, 0, 0 };
	uint8_t rx_data[] = { 0, 0, 0, 0 };
	req.tx_data       = tx_data;
	req.rx_data       = rx_data;
	req.len           = 4;
	req.bits          = 8;
	req.width         = SPI17Y_WIDTH_1;
	req.ssel          = 0;
	req.deass         = 1;
	req.ssel_pol      = SPI17Y_POL_LOW;
	req.tx_num        = 0;
	req.rx_num        = 0;

	SPI_MasterTrans(SPI0, &req);

	return (rx_data[1] << 16) | (rx_data[2] << 8) | rx_data[3];
}

static void ecg_write_reg(uint8_t reg, uint32_t data)
{
	//printf("write %02x %06lx\n", reg, data);
	spi_req_t req;
	uint8_t tx_data[] = {
		(reg << 1) | 0, data >> 16, (data >> 8) & 0xFF, data & 0xFF
	};
	uint8_t rx_data[] = { 0, 0, 0, 0 };
	req.tx_data       = tx_data;
	req.rx_data       = rx_data;
	req.len           = 4;
	req.bits          = 8;
	req.width         = SPI17Y_WIDTH_1;
	req.ssel          = 0;
	req.deass         = 1;
	req.ssel_pol      = SPI17Y_POL_LOW;
	req.tx_num        = 0;
	req.rx_num        = 0;

	SPI_MasterTrans(SPI0, &req);
}

static int ecg_enable(int sample_rate, bool enable_internal_pull)
{
	// Reset ECG to clear registers
	ecg_write_reg(SW_RST, 0);

	// General config register setting
	union GeneralConfiguration_u CNFG_GEN_r;
	CNFG_GEN_r.bits.en_ecg = 1; // Enable ECG channel
	if (enable_internal_pull) {
		CNFG_GEN_r.bits.rbiasn =
			1; // Enable resistive bias on negative input
		CNFG_GEN_r.bits.rbiasp =
			1; // Enable resistive bias on positive input
		CNFG_GEN_r.bits.en_rbias = 1; // Enable resistive bias
	} else {
		CNFG_GEN_r.bits.rbiasn =
			0; // Enable resistive bias on negative input
		CNFG_GEN_r.bits.rbiasp =
			0; // Enable resistive bias on positive input
		CNFG_GEN_r.bits.en_rbias = 0; // Enable resistive bias
	}

	CNFG_GEN_r.bits.imag      = 2; // Current magnitude = 10nA
	CNFG_GEN_r.bits.en_dcloff = 1; // Enable DC lead-off detection
	ecg_write_reg(CNFG_GEN, CNFG_GEN_r.all);

	// ECG Config register setting
	union ECGConfiguration_u CNFG_ECG_r;
	CNFG_ECG_r.bits.dlpf = 1; // Digital LPF cutoff = 40Hz
	CNFG_ECG_r.bits.dhpf = 1; // Digital HPF cutoff = 0.5Hz
	//CNFG_ECG_r.bits.gain = 3;       // ECG gain = 160V/V
	CNFG_ECG_r.bits.gain = 0;
	if (sample_rate == 128) {
		CNFG_ECG_r.bits.rate = 2; // Sample rate = 128 sps
	} else if (sample_rate == 256) {
		CNFG_ECG_r.bits.rate = 1; // Sample rate = 256 sps
	} else {
		return -EINVAL;
	}

	ecg_write_reg(CNFG_ECG, CNFG_ECG_r.all);

	//R-to-R configuration
	union RtoR1Configuration_u CNFG_RTOR_r;
	CNFG_RTOR_r.bits.en_rtor = 1; // Enable R-to-R detection
	ecg_write_reg(CNFG_RTOR1, CNFG_RTOR_r.all);

	//Manage interrupts register setting
	union ManageInterrupts_u MNG_INT_r;
	MNG_INT_r.bits.efit      = 0b00011; // Assert EINT w/ 4 unread samples
	MNG_INT_r.bits.clr_rrint = 0b01; // Clear R-to-R on RTOR reg. read back
	ecg_write_reg(MNGR_INT, MNG_INT_r.all);

	//Enable interrupts register setting
	union EnableInterrupts_u EN_INT_r;
	EN_INT_r.all            = 0;
	EN_INT_r.bits.en_eint   = 1; // Enable EINT interrupt
	EN_INT_r.bits.en_rrint  = 0; // Disable R-to-R interrupt
	EN_INT_r.bits.intb_type = 3; // Open-drain NMOS with internal pullup
	ecg_write_reg(EN_INT, EN_INT_r.all);

	//Dyanmic modes config
	union ManageDynamicModes_u MNG_DYN_r;
	MNG_DYN_r.bits.fast = 0; // Fast recovery mode disabled
	ecg_write_reg(MNGR_DYN, MNG_DYN_r.all);

	// MUX Config
	union MuxConfiguration_u CNFG_MUX_r;
	CNFG_MUX_r.bits.openn = 0; // Connect ECGN to AFE channel
	CNFG_MUX_r.bits.openp = 0; // Connect ECGP to AFE channel
	ecg_write_reg(CNFG_EMUX, CNFG_MUX_r.all);

	ecg_write_reg(SYNCH, 0);

	return 0;
}

static int ecg_disable(void)
{
	// TODO
	return 0;
}
/*
 * Fetch all data available from FIFO buffer and handle all data
 * contained in it.
 */
static int max30001_fetch_fifo(void)
{
	int result = 0;

281
282
	mutex_lock(&max30001_mutex);
	hwlock_acquire(HWLOCK_SPI_ECG);
schneider's avatar
schneider committed
283
284
285

	uint32_t ecgFIFO, readECGSamples, ETAG[32], status;
	int16_t ecgSample[32];
286
287
288
289
290
	const uint32_t EINT_STATUS_MASK       = 1 << 23;
	const uint32_t FIFO_OVF_MASK          = 0x7;
	const uint32_t FIFO_VALID_SAMPLE_MASK = 0x0;
	const uint32_t FIFO_FAST_SAMPLE_MASK  = 0x1;
	const uint32_t ETAG_BITS_MASK         = 0x7;
schneider's avatar
schneider committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

	status = ecg_read_reg(STATUS); // Read the STATUS register

	// Check if EINT interrupt asserted
	if ((status & EINT_STATUS_MASK) == EINT_STATUS_MASK) {
		readECGSamples = 0; // Reset sample counter

		do {
			ecgFIFO = ecg_read_reg(ECG_FIFO); // Read FIFO
			ecgSample[readECGSamples] =
				ecgFIFO >> 8; // Isolate voltage data
			ETAG[readECGSamples] =
				(ecgFIFO >> 3) & ETAG_BITS_MASK; // Isolate ETAG
			readECGSamples++; // Increment sample counter

			// Check that sample is not last sample in FIFO
		} while (ETAG[readECGSamples - 1] == FIFO_VALID_SAMPLE_MASK ||
			 ETAG[readECGSamples - 1] == FIFO_FAST_SAMPLE_MASK);

		// Check if FIFO has overflowed
		if (ETAG[readECGSamples - 1] == FIFO_OVF_MASK) {
312
313
314
315
			ecg_write_reg(FIFO_RST, 0); // Reset FIFO
			LOG_WARN(
				"max30001",
				"fifo overflow"); // TODO; handle fifo full
schneider's avatar
schneider committed
316
317
318
319
320
		}
		max30001_handle_samples(ecgSample, readECGSamples);
	}

	hwlock_release(HWLOCK_SPI_ECG);
321
	mutex_unlock(&max30001_mutex);
schneider's avatar
schneider committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
	return result;
}

/*
 * Callback for the MAX30001 interrupt pin.  This callback is called from the
 * SDK's GPIO interrupt driver, in interrupt context.
 */
static void max300001_interrupt_callback(void *_)
{
	BaseType_t xHigherPriorityTaskWoken = pdFALSE;

	if (max30001_task_id != NULL) {
		vTaskNotifyGiveFromISR(
			max30001_task_id, &xHigherPriorityTaskWoken
		);
		portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
	}
}
/* }}} */

342
343
void max30001_mutex_init(void)
{
344
	mutex_create(&max30001_mutex);
345
346
}

schneider's avatar
schneider committed
347
348
349
350
void vMAX30001Task(void *pvParameters)
{
	max30001_task_id = xTaskGetCurrentTaskHandle();

351
352
	mutex_lock(&max30001_mutex);
	hwlock_acquire(HWLOCK_SPI_ECG);
schneider's avatar
schneider committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

	/* Install interrupt callback */
	GPIO_Config(&max30001_interrupt_pin);
	GPIO_RegisterCallback(
		&max30001_interrupt_pin, max300001_interrupt_callback, NULL
	);
	GPIO_IntConfig(
		&max30001_interrupt_pin, GPIO_INT_EDGE, GPIO_INT_FALLING
	);
	GPIO_IntEnable(&max30001_interrupt_pin);
	NVIC_SetPriority(
		(IRQn_Type)MXC_GPIO_GET_IRQ(max30001_interrupt_pin.port), 2
	);
	NVIC_EnableIRQ(
		(IRQn_Type)MXC_GPIO_GET_IRQ(max30001_interrupt_pin.port)
	);

	GPIO_Config(&analog_switch);
	GPIO_OutClr(&analog_switch); // Wrist

	hwlock_release(HWLOCK_SPI_ECG);
374
	mutex_unlock(&max30001_mutex);
schneider's avatar
schneider committed
375
376
377
378
379
380

	/* ----------------------------------------- */

	while (1) {
		if (max30001_sensor_active) {
			int ret = max30001_fetch_fifo();
381
			if (ret < 0) {
schneider's avatar
schneider committed
382
383
384
385
386
387
388
389
390
391
392
393
				LOG_ERR("max30001", "Unknown error: %d", -ret);
			}
		}
		/*
		 * Wait for interrupt.  After two seconds, fetch FIFO anyway
		 *
		 * In the future, reads using epic_stream_read() might also
		 * trigger a FIFO fetch, from outside this task.
		 */
		ulTaskNotifyTake(pdTRUE, pdMS_TO_TICKS(2000));
	}
}